U-Substitution and Integration by Parts

U-Substitution

The general form of an integrand which requires U-Substitution is $\int f(g(x)) g^{\prime}(x) d x$. This can be rewritten as $\int f(u) d u$.
A big hint to use U-Substitution is that there is a composition of functions and there is some relation between two functions involved by way of derivatives.

Example 1

$\int \sqrt{3 x+2} d x$
Let $u=3 x+2$. Then $d u=3 d x$ and thus $d x=\frac{1}{3} d u$. We then consider $\int \sqrt{u}\left(\frac{1}{3}\right) d u$.
$\frac{1}{3} \int \sqrt{u} d u=\frac{1}{3} \frac{u^{3 / 2}}{3 / 2}+C=\frac{2}{9} u^{3 / 2}+C$
Next we must make sure to have everything in terms of x like we had in the beginning of the problem. From our previous choice of u, we know $u=3 x+2$.
So our final answer is $\frac{2}{9}(3 x+2)^{3 / 2}+C$.

For indefinite integrals, always make sure to switch back to the variable you started with.

Example 2

$\int_{1}^{2} x^{3} \cos \left(x^{4}+3\right) d x$
Let $u=x^{4}+3$. So $d u=4 x^{3} d x$. Then $\frac{1}{4} d u=x^{3} d x$
From here we have two options. We can either switch back to x later and plug in our bounds after or we can change our integral bounds along with our U-Substitution and solve.

Option 1:

If we do not change our bounds, we have $\int_{a}^{b} \frac{1}{4} \cos (u) d u$. Note that we use a and b as placeholders for now.
$\int_{a}^{b} \frac{1}{4} \cos (u) d u=\left.\frac{1}{4} \sin (u)\right|_{a} ^{b}$
By substituting back for x using $u=x^{4}+3$, we have $\left.\frac{1}{4} \sin \left(x^{4}+3\right)\right|_{1} ^{2}$.
Note, we can put our original bounds back once we have everything in terms of x. Thus we have $\frac{1}{4} \sin \left(2^{4}+3\right)-\frac{1}{4} \sin \left(1^{4}+3\right)=\frac{1}{4} \sin (19)-\frac{1}{4} \sin (4)$

Option 2:

If we change our bounds, we need $u=x^{4}+3$. If $x=1$ then $u=4$. If $x=2$ then $u=19$. Now our problem becomes:
$\int_{4}^{19} \frac{1}{4} \cos (u) d u=\left.\frac{1}{4} \sin (u)\right|_{4} ^{19}=\frac{1}{4} \sin (19)-\frac{1}{4} \sin (4)$
In both options we reach the same answer.

Example 3

$\int \sqrt{1+x^{2}} x^{5} d x$
Let $u=1+x^{2}$. Then $d u=2 x d x$ and $\frac{1}{2} d u=x d x$. Because we have more x 's than our substitution takes care of, we have an additional step. $u=1+x^{2}$ tells us that $x^{2}=u-1$.

$$
\begin{aligned}
& \int \sqrt{1+x^{2}} x^{5} d x=\int \sqrt{1+x^{2}} x^{2} x^{2} x d x=\int \sqrt{u}(u-1)(u-1) \frac{1}{2} d u=\frac{1}{2} \int \sqrt{u}(u-1)^{2} d u \\
& =\frac{1}{2} \int \sqrt{u}\left(u^{2}-2 u+1\right) d u=\frac{1}{2} \int\left(u^{5 / 2}-2 u^{3 / 2}+u^{1 / 2}\right) d u=\frac{1}{2}\left[u^{u^{/ 2}}\right. \\
& 7 / 2 \\
& \left.u^{\frac{u^{5} / 2}{5 / 2}}+\frac{u^{3 / 2}}{3 / 2}\right]+C \\
& =\frac{u^{7 / 2}}{7}-2 \frac{u^{5 / 2}}{5}+\frac{u^{3 / 2}}{3}+C=\frac{\left(1+x^{2}\right)^{7 / 2}}{7}-2 \frac{\left(1+x^{2}\right)^{5 / 2}}{5}+\frac{\left(1+x^{2}\right)^{3 / 2}}{3}+C
\end{aligned}
$$

U-Substitution and Integration by Parts

Integration by Parts

The general form of an integrand which requires integration by parts is $\int f(x) g^{\prime}(x) d x$. Thus it has the form $\int f(x) g^{\prime}(x) d x=f(x) g(x)-\int g(x) f^{\prime}(x) \mathrm{dx}$.

Alternatively, we can use $\int u d v=u v-\int v d u$
Typically, when deciding which function is u and which is $d v$ we want our u to be something whose derivative becomes easier to deal with.

Example 4

$\int x \sin x d x$
We choose our $u=x$ since it's derivative becomes easier than $\sin x$.
Then $u=x, d u=d x, d v=\sin x d x$, and $v=-\cos x$. Following the formula, we have
$\int u d v=u v-\int v d u=x(-\cos x)-\int(-\cos x) d x=-x \cos x+\sin x+C$

Example 5

$\int \ln x d x$
We choose $u=\ln x$ since $\ln x$ becomes easier to work with when we take its derivative. Note that the integrand has another function present, a constant of 1 . We can rewrite the problem as $\int \ln x \cdot 1 d x$.
So $u=\ln x, d u=\frac{1}{x}, d v=1 d x$, and $v=x$.
$\int u d v=u v-\int v d u=\ln (x) \cdot x-\int x \cdot \frac{1}{x} d x=x \ln x-\int 1 d x=x \ln x-x+C$

Example 6
 $\int t^{2} e^{t} d t$

Some problems, such as this one, require two steps of integration by parts. Looking at our functions, e^{t}, does not have an easier derivative or antiderivative to work with. So we choose $u=t^{2}$. Then $d u=2 t d t, d v=e^{t}$, and $v=e^{t}$. Thus we have
$\int u d v=u v-\int v d u=t^{2} e^{t}-\int e^{t}(2 t) d t$
The integral that results requires integration by parts once more. We focus on $\int e^{t}(2 t) d t$.
For the next step we will use different variables just so we do not confuse them with the previous step.
Let $w=2 t$ for $\int w d z=w z-\int z d w$. Then $d w=2 d t, d z=e^{t}$, and $z=e^{t}$.
$\int w d z=w z-\int z d w=2 t e^{t}-\int e^{t}(2) d t=2 t e^{t}-2 e^{t}+C$
Combining the two parts we have:
$\int u d v=u v-\int v d u=t^{2} e^{t}-\int e^{t}(2 t) d t=t^{2} e^{t}-\left[2 t e^{t}-2 e^{t}+C\right]=t^{2} e^{t}-2 t e^{t}+2 e^{t}+C$

