

U-Substitution

The general form of an integrand which requires U-Substitution is $\int f(g(x))g'(x)dx$. This can be rewritten as $\int f(u) du$.

A big hint to use U-Substitution is that there is a composition of functions and there is some relation between two functions involved by way of derivatives.

Example 1

 $\int \sqrt{3x+2}dx$ Let u = 3x + 2. Then du = 3dx and thus $dx = \frac{1}{3}du$. We then consider $\int \sqrt{u}(\frac{1}{3})du$. $\frac{1}{3}\int \sqrt{u}du = \frac{1}{3}\frac{u^{3/2}}{3/2} + C = \frac{2}{9}u^{3/2} + C$ Next we must make sure to have everything in terms of x like we had in the beginning of the problem. From our previous choice of u, we know u = 3x + 2. So our final answer is $\frac{2}{9}(3x+2)^{3/2}+C$.

For indefinite integrals, always make sure to switch back to the variable you started with.

Example 2

 $\int_{1}^{2} x^{3} \cos(x^{4} + 3) dx$

Let $u = x^4 + 3$. So $du = 4x^3 dx$. Then $\frac{1}{4}du = x^3 dx$

From here we have two options. We can either switch back to x later and plug in our bounds after or we can change our integral bounds along with our U-Substitution and solve.

Option 1:

If we do not change our bounds, we have $\int_a^b \frac{1}{4} \cos(u) du$. Note that we use a and b as placeholders for now.

$$\int_{a}^{b} \frac{1}{4} \cos(u) du = \frac{1}{4} \sin(u) |_{a}^{b}$$

By substituting back for x using $u = x^4 + 3$, we have $\frac{1}{4}\sin(x^4 + 3)|_1^2$.

Note, we can put our original bounds back once we have everything in terms of x. Thus we have $\frac{1}{4}\sin(2^4+3) - \frac{1}{4}\sin(1^4+3) = \frac{1}{4}\sin(19) - \frac{1}{4}\sin(4)$

Option 2:

If we change our bounds, we need $u = x^4 + 3$. If x = 1 then u = 4. If x = 2 then u = 19. Now our problem becomes:

$$\int_{4}^{19} \frac{1}{4} \cos(u) du = \frac{1}{4} \sin(u) |_{4}^{19} = \frac{1}{4} \sin(19) - \frac{1}{4} \sin(4)$$

In both options we reach the same answer.

Example 3

 $\int \sqrt{1+x^2}x^5dx$ Let $u = 1 + x^2$. Then du = 2xdx and $\frac{1}{2}du = xdx$. Because we have more x's than our substitution takes care of, we have an additional step. $u = 1 + x^2$ tells us that $x^2 = u - 1$. $\int \sqrt{1+x^2} x^5 dx = \int \sqrt{1+x^2} x^2 x^2 x dx = \int \sqrt{u} (u-1)(u-1) \frac{1}{2} du = \frac{1}{2} \int \sqrt{u} (u-1)^2 du$ $= \frac{1}{2} \int \sqrt{u} (u^2 - 2u + 1) du = \frac{1}{2} \int (u^{5/2} - 2u^{3/2} + u^{1/2}) du = \frac{1}{2} \left[\frac{u^{7/2}}{7/2} - 2\frac{u^{5/2}}{5/2} + \frac{u^{3/2}}{3/2} \right] + C$ $=\frac{u^{7/2}}{7} - 2\frac{u^{5/2}}{5} + \frac{u^{3/2}}{3} + C = \frac{(1+x^2)^{7/2}}{7} - 2\frac{(1+x^2)^{5/2}}{5} + \frac{(1+x^2)^{3/2}}{3} + C$

Integration by Parts

The general form of an integrand which requires integration by parts is $\int f(x)g'(x)dx$. Thus it has the form $\int f(x)q'(x)dx = f(x)q(x) - \int q(x)f'(x)dx$.

Alternatively, we can use $\int u dv = uv - \int v du$

Typically, when deciding which function is u and which is dv we want our u to be something whose derivative becomes easier to deal with.

Example 4

 $\int x \sin x dx$

We choose our u = x since it's derivative becomes easier than $\sin x$. Then u = x, du = dx, $dv = \sin x dx$, and $v = -\cos x$. Following the formula, we have $\int u dv = uv - \int v du = x(-\cos x) - \int (-\cos x) dx = -x\cos x + \sin x + C$

Example 5

 $\int \ln x dx$

We choose $u = \ln x$ since $\ln x$ becomes easier to work with when we take its derivative. Note that the integrand has another function present, a constant of 1. We can rewrite the problem as $\int \ln x \cdot 1 dx$. So $u = \ln x$, $du = \frac{1}{x}$, dv = 1dx, and v = x.

 $\int u dv = uv - \int v du = \ln(x) \cdot x - \int x \cdot \frac{1}{x} dx = x \ln x - \int 1 dx = x \ln x - x + C$

Example 6

 $\int t^2 e^t dt$

Some problems, such as this one, require two steps of integration by parts. Looking at our functions, e^t , does not have an easier derivative or antiderivative to work with. So we choose $u = t^2$. Then du = 2tdt, $dv = e^t$, and $v = e^t$. Thus we have $\int u dv = uv - \int v du = t^2 e^t - \int e^t (2t) dt$

The integral that results requires integration by parts once more. We focus on $\int e^t(2t)dt$. For the next step we will use different variables just so we do not confuse them with the previous step.

Let w = 2t for $\int wdz = wz - \int zdw$. Then dw = 2dt, $dz = e^t$, and $z = e^t$. $\int wdz = wz - \int zdw = 2te^t - \int e^t(2)dt = 2te^t - 2e^t + C$

Combining the two parts we have: $\int u dv = uv - \int v du = t^2 e^t - \int e^t (2t) dt = t^2 e^t - [2te^t - 2e^t + C] = t^2 e^t - 2te^t + 2e^t + C$

